Skip to main content

How to Find Undervalued Properties Using Data: A Complete Guide for Investors

ยท 9 min read
PropAPIS Team
Real Estate Data Infrastructure Engineers

Finding properties priced below market value is the holy grail of real estate investing. A property purchased at a 15-20% discount represents instant equity and significantly improves your investment returns. But in today's competitive market, how do you find these deals before everyone else?

The answer: Data.

While other investors rely on gut feel and manual searches, savvy investors use automated data analysis to identify undervalued properties within hours of listing. This guide shows you exactly how.

What Makes a Property "Undervalued"?โ€‹

Before we dive into finding them, let's define what we mean by undervalued:

Undervalued Property: A property listed at a price significantly below its true market value, typically 15%+ below comparable properties or automated valuation estimates.

Why properties become undervalued:

  • ๐Ÿ  Motivated sellers - Divorce, relocation, financial distress
  • โฐ Time pressure - Estate sales, job transfers
  • ๐Ÿ“‰ Poor marketing - Bad photos, incomplete listings
  • ๐Ÿ” Hidden value - Cosmetic issues masking good bones
  • ๐Ÿ’ฐ Pricing mistakes - Seller/agent mispriced the property

The opportunity: These properties often receive fewer offers because most buyers filter them out or don't recognize the opportunity.


The Traditional Approach (And Why It Doesn't Scale)โ€‹

How Most Investors Search for Dealsโ€‹

Manual platform checking:

  1. Check Zillow every morning
  2. Check Realtor.com every afternoon
  3. Check Redfin in the evening
  4. Repeat daily

The problems:

  • โฑ๏ธ Time-intensive: 1-2 hours daily
  • ๐Ÿ˜ซ Inconsistent: Miss listings during vacations, weekends
  • ๐ŸŒ Slow discovery: Find properties 24-72 hours after listing
  • ๐Ÿƒ Late to market: Property already has 5-10 offers

The math doesn't work:

  • You spend 10 hours/week searching
  • You find 2-3 potential deals
  • By the time you analyze them, they're under contract
  • Conversion rate: <5%

There has to be a better way.


The Data-Driven Approach: 5 Proven Strategiesโ€‹

Strategy 1: Automated Discount-to-Value Analysisโ€‹

The concept: Compare asking price to automated valuation estimates (AVMs) from multiple sources.

How it works:

import requests
from statistics import median

def find_undervalued_properties(location, min_discount=0.15):
"""
Find properties priced below market value

Args:
location: Target market (e.g., "Austin, TX")
min_discount: Minimum discount required (0.15 = 15%)

Returns:
List of undervalued properties
"""

api_key = 'your_propapis_key'

# Search active listings
response = requests.post(
'https://api.propapis.com/v1/properties/search',
headers={'Authorization': f'Bearer {api_key}'},
json={
'location': location,
'status': 'active',
'property_type': 'Single Family',
'price_min': 200000,
'price_max': 600000,
'max_results': 500
}
)

properties = response.json()['properties']
undervalued = []

for prop in properties:
# Get valuation estimates from multiple sources
estimates = []

if prop.get('estimate_zillow'):
estimates.append(prop['estimate_zillow'])
if prop.get('estimate_redfin'):
estimates.append(prop['estimate_redfin'])
if prop.get('estimate_realtor'):
estimates.append(prop['estimate_realtor'])

# Need at least 2 sources for reliability
if len(estimates) &lt; 2:
continue

# Calculate consensus value (median of estimates)
consensus_value = median(estimates)

# Calculate discount
asking_price = prop['price']
discount = (consensus_value - asking_price) / consensus_value

# Filter for significant discounts
if discount &gt;= min_discount:
undervalued.append({
'address': prop['address'],
'asking_price': asking_price,
'consensus_value': consensus_value,
'discount': discount,
'discount_dollars': consensus_value - asking_price,
'days_on_market': prop.get('days_on_market', 0),
'zillow_estimate': prop.get('estimate_zillow'),
'redfin_estimate': prop.get('estimate_redfin'),
'url': prop.get('url')
})

# Sort by discount (best deals first)
undervalued.sort(key=lambda x: x['discount'], reverse=True)

return undervalued


# Example usage
deals = find_undervalued_properties('Austin, TX', min_discount=0.15)

print(f"\n๐ŸŽฏ Found {len(deals)} properties with 15%+ discount\n")

for deal in deals[:10]: # Top 10 deals
print(f"๐Ÿ“ {deal['address']}")
print(f" Asking: ${deal['asking_price']:,}")
print(f" Value: ${deal['consensus_value']:,}")
print(f" Discount: {deal['discount']:.1%} (${deal['discount_dollars']:,})")
print(f" Days on Market: {deal['days_on_market']}")
print(f" ๐Ÿ”— {deal['url']}\n")

Why this works:

  • โœ… Automated scanning of hundreds of properties
  • โœ… Multiple valuation sources reduce error
  • โœ… Immediate identification of discounts
  • โœ… Can run 24/7 without manual effort

Real-world results: Our clients using this strategy report finding 10-15 properties with 15%+ discount per month in their target markets, compared to 1-2 per month with manual searching.

Strategy 2: Price Reduction Monitoringโ€‹

The insight: Properties that reduce price are motivated sellers willing to negotiate.

Why price reductions signal opportunity:

  • Seller is motivated (hasn't received acceptable offers)
  • Less competition (property has been "on market" for a while)
  • Room for negotiation (seller already came down once)

Implementation:

def track_price_reductions(location, reduction_pct_min=0.10):
"""Find properties with recent price reductions"""

api_key = 'your_propapis_key'

# Search for price reductions in last 30 days
response = requests.post(
'https://api.propapis.com/v1/properties/search',
headers={'Authorization': f'Bearer {api_key}'},
json={
'location': location,
'status': 'active',
'price_reduced': True,
'price_reduced_days': 30,
'max_results': 200
}
)

properties = response.json()['properties']

significant_reductions = []

for prop in properties:
# Calculate reduction percentage
if not prop.get('price_change') or not prop.get('price'):
continue

reduction = abs(prop['price_change'])
current_price = prop['price']
original_price = current_price + reduction

reduction_pct = reduction / original_price

# Filter for significant reductions
if reduction_pct &gt;= reduction_pct_min:
# Check if still overpriced vs estimates
estimates = [
prop.get('estimate_zillow'),
prop.get('estimate_redfin')
]
estimates = [e for e in estimates if e]

if estimates:
avg_estimate = sum(estimates) / len(estimates)
remaining_discount = (avg_estimate - current_price) / avg_estimate
else:
remaining_discount = None

significant_reductions.append({
'address': prop['address'],
'original_price': original_price,
'current_price': current_price,
'reduction_dollars': reduction,
'reduction_pct': reduction_pct,
'remaining_discount': remaining_discount,
'days_on_market': prop.get('days_on_market'),
'url': prop.get('url')
})

# Sort by reduction percentage
significant_reductions.sort(key=lambda x: x['reduction_pct'], reverse=True)

return significant_reductions


# Find properties with 10%+ price reduction
reductions = track_price_reductions('Phoenix, AZ', reduction_pct_min=0.10)

print(f"\n๐Ÿ“‰ Properties with 10%+ Price Reductions\n")

for prop in reductions[:10]:
print(f"๐Ÿ“ {prop['address']}")
print(f" Was: ${prop['original_price']:,}")
print(f" Now: ${prop['current_price']:,}")
print(f" Reduction: {prop['reduction_pct']:.1%} (${prop['reduction_dollars']:,})")

if prop['remaining_discount']:
print(f" Still below market: {prop['remaining_discount']:.1%}")

print(f" Days on Market: {prop['days_on_market']}\n")

Pro tip: Properties with multiple price reductions (>2) are especially motivated. Call the listing agent directly.

Strategy 3: Days on Market (DOM) Analysisโ€‹

The pattern: Properties that sit on market >90 days often become negotiable.

Why this works:

  • Carrying costs add up (mortgage, taxes, insurance)
  • Seller psychology shifts from "hoping for best price" to "just want to sell"
  • Less competition from other buyers (property seems "stale")

Implementation:

def find_stale_listings(location, min_dom=90):
"""Find properties with high days on market"""

api_key = 'your_propapis_key'

response = requests.post(
'https://api.propapis.com/v1/properties/search',
headers={'Authorization': f'Bearer {api_key}'},
json={
'location': location,
'status': 'active',
'days_on_market_min': min_dom,
'property_type': 'Single Family',
'max_results': 200
}
)

properties = response.json()['properties']

opportunities = []

for prop in properties:
# Get valuation estimates
estimates = [
prop.get('estimate_zillow'),
prop.get('estimate_redfin')
]
estimates = [e for e in estimates if e]

if not estimates:
continue

avg_estimate = sum(estimates) / len(estimates)
asking_price = prop['price']

# Calculate current discount (if any)
discount = (avg_estimate - asking_price) / avg_estimate

# Calculate potential negotiation room
# Assumption: Can negotiate 5-10% on stale listings
potential_price = asking_price * 0.92 # 8% negotiation
total_discount = (avg_estimate - potential_price) / avg_estimate

opportunities.append({
'address': prop['address'],
'asking_price': asking_price,
'estimated_value': avg_estimate,
'current_discount': discount,
'potential_price_after_negotiation': potential_price,
'total_potential_discount': total_discount,
'days_on_market': prop.get('days_on_market'),
'price_reductions': prop.get('price_changes_count', 0),
'url': prop.get('url')
})

# Sort by total potential discount
opportunities.sort(key=lambda x: x['total_potential_discount'], reverse=True)

return opportunities


# Find stale listings with negotiation potential
stale = find_stale_listings('Tampa, FL', min_dom=90)

print(f"\nโฐ Stale Listings (90+ Days on Market)\n")

for prop in stale[:10]:
print(f"๐Ÿ“ {prop['address']}")
print(f" Asking: ${prop['asking_price']:,}")
print(f" Estimated Value: ${prop['estimated_value']:,}")
print(f" Current Discount: {prop['current_discount']:.1%}")
print(f" With 8% Negotiation: {prop['total_potential_discount']:.1%} discount")
print(f" Days on Market: {prop['days_on_market']}")
print(f" Price Reductions: {prop['price_reductions']}\n")

Negotiation tip: Reference the days on market in your offer. "I noticed this property has been on market for 120 days. I'm offering all cash with a quick close..."

Strategy 4: Expired Listings (Off-Market Gold)โ€‹

The opportunity: Properties that failed to sell are often re-listed at lower prices or sold off-market.

Why expired listings are valuable:

  • Seller already tried to sell (motivated)
  • No current competition (off-market)
  • Often willing to accept 10-15% less than original list price
  • You can approach directly (no bidding war)

Implementation:

def find_expired_listings(location, expired_days=30):
"""Find recently expired listings"""

api_key = 'your_propapis_key'

response = requests.post(
'https://api.propapis.com/v1/properties/search',
headers={'Authorization': f'Bearer {api_key}'},
json={
'location': location,
'status': 'expired',
'expired_days': expired_days,
'property_type': 'Single Family',
'max_results': 100
}
)

properties = response.json()['properties']

opportunities = []

for prop in properties:
# Get current valuation
estimates = [
prop.get('estimate_zillow'),
prop.get('estimate_redfin')
]
estimates = [e for e in estimates if e]

if not estimates:
continue

current_value = sum(estimates) / len(estimates)

# Original list price
original_price = prop.get('price', 0)

# Estimate acceptable offer (typically 10-15% below original list)
estimated_acceptable = original_price * 0.88 # 12% below list

# Calculate discount vs current value
discount = (current_value - estimated_acceptable) / current_value

opportunities.append({
'address': prop['address'],
'original_list_price': original_price,
'current_estimated_value': current_value,
'estimated_acceptable_offer': estimated_acceptable,
'potential_discount': discount,
'days_on_market_before_expiry': prop.get('days_on_market'),
'expired_date': prop.get('status_date'),

# Owner contact info (if available from public records)
'owner_name': prop.get('owner_name'),
'owner_address': prop.get('owner_mailing_address')
})

# Sort by potential discount
opportunities.sort(key=lambda x: x['potential_discount'], reverse=True)

return opportunities


# Find expired listings
expired = find_expired_listings('Nashville, TN', expired_days=30)

print(f"\n๐Ÿ”“ Expired Listings (Last 30 Days)\n")

for prop in expired[:10]:
print(f"๐Ÿ“ {prop['address']}")
print(f" Originally Listed: ${prop['original_list_price']:,}")
print(f" Current Value: ${prop['current_estimated_value']:,}")
print(f" Suggested Offer: ${prop['estimated_acceptable_offer']:,}")
print(f" Potential Discount: {prop['potential_discount']:.1%}")
print(f" Days on Market: {prop['days_on_market_before_expiry']}")

if prop.get('owner_name'):
print(f" Owner: {prop['owner_name']}")

print()

Outreach strategy:

  1. Send personalized letter to owner
  2. Wait 3-5 days
  3. Follow up with phone call
  4. Present cash offer with quick close

Conversion rate: 8-12% of expired listing outreach converts to accepted offers.

Strategy 5: Comparative Market Analysis (CMA) at Scaleโ€‹

The approach: Run automated CMAs across hundreds of properties to find pricing outliers.

How it works:

def find_cma_outliers(location):
"""Find properties priced below comparable sales"""

api_key = 'your_propapis_key'

# Get active listings
response = requests.post(
'https://api.propapis.com/v1/properties/search',
headers={'Authorization': f'Bearer {api_key}'},
json={
'location': location,
'status': 'active',
'property_type': 'Single Family',
'max_results': 500
}
)

active = response.json()['properties']

outliers = []

for prop in active:
# Get comparable sales (last 6 months)
from datetime import datetime, timedelta

comps_response = requests.post(
'https://api.propapis.com/v1/properties/search',
headers={'Authorization': f'Bearer {api_key}'},
json={
'location': prop['zipcode'],
'status': 'sold',
'sold_since': (datetime.now() - timedelta(days=180)).isoformat(),
'bedrooms': prop['bedrooms'],
'bathrooms_min': prop['bathrooms'] - 0.5,
'bathrooms_max': prop['bathrooms'] + 0.5,
'square_feet_min': prop['square_feet'] * 0.85,
'square_feet_max': prop['square_feet'] * 1.15,
'max_results': 20
}
)

comps = comps_response.json()['properties']

if len(comps) &lt; 5:
continue # Need sufficient comps

# Calculate price per sqft from comps
comp_ppsf = [
c['sold_price'] / c['square_feet']
for c in comps
if c.get('sold_price') and c.get('square_feet')
]

if not comp_ppsf:
continue

avg_comp_ppsf = sum(comp_ppsf) / len(comp_ppsf)

# Calculate subject property price per sqft
subject_ppsf = prop['price'] / prop['square_feet']

# Calculate discount
discount = (avg_comp_ppsf - subject_ppsf) / avg_comp_ppsf

# Find outliers priced 15%+ below comps
if discount &gt;= 0.15:
outliers.append({
'address': prop['address'],
'asking_price': prop['price'],
'price_per_sqft': subject_ppsf,
'avg_comp_price_per_sqft': avg_comp_ppsf,
'discount': discount,
'estimated_market_value': avg_comp_ppsf * prop['square_feet'],
'potential_equity': (avg_comp_ppsf - subject_ppsf) * prop['square_feet'],
'comps_analyzed': len(comps),
'url': prop.get('url')
})

# Sort by potential equity
outliers.sort(key=lambda x: x['potential_equity'], reverse=True)

return outliers


# Find CMA outliers
outliers = find_cma_outliers('Charlotte, NC')

print(f"\n๐Ÿ“Š CMA Outliers (Priced Below Comps)\n")

for prop in outliers[:10]:
print(f"๐Ÿ“ {prop['address']}")
print(f" Asking: ${prop['asking_price']:,} (${prop['price_per_sqft']:.0f}/sqft)")
print(f" Comps Avg: ${prop['avg_comp_price_per_sqft']:.0f}/sqft")
print(f" Discount: {prop['discount']:.1%}")
print(f" Market Value: ${prop['estimated_market_value']:,}")
print(f" Instant Equity: ${prop['potential_equity']:,}")
print(f" Based on {prop['comps_analyzed']} comps\n")

Combining Strategies: The Multi-Factor Approachโ€‹

The power move: Use multiple indicators simultaneously for highest-confidence deals.

Example scoring system:

def score_investment_opportunity(property_data):
"""Score property using multiple factors"""

score = 0
factors = []

# Factor 1: Discount to automated value (40 points max)
if property_data.get('discount_to_value'):
discount = property_data['discount_to_value']

if discount &gt;= 0.20:
score += 40
factors.append('20%+ discount to value')
elif discount &gt;= 0.15:
score += 30
factors.append('15%+ discount to value')
elif discount &gt;= 0.10:
score += 20
factors.append('10%+ discount to value')

# Factor 2: Price reductions (30 points max)
if property_data.get('price_reduced'):
reduction_pct = property_data.get('price_reduction_pct', 0)

if reduction_pct &gt;= 0.15:
score += 30
factors.append('15%+ price reduction')
elif reduction_pct &gt;= 0.10:
score += 20
factors.append('10%+ price reduction')
elif reduction_pct &gt;= 0.05:
score += 10
factors.append('5%+ price reduction')

# Factor 3: Days on market (20 points max)
dom = property_data.get('days_on_market', 0)

if dom &gt;= 180:
score += 20
factors.append('180+ days on market')
elif dom &gt;= 120:
score += 15
factors.append('120+ days on market')
elif dom &gt;= 90:
score += 10
factors.append('90+ days on market')

# Factor 4: CMA outlier (10 points max)
if property_data.get('below_comp_ppsf'):
if property_data['below_comp_ppsf'] &gt;= 0.15:
score += 10
factors.append('15%+ below comp $/sqft')

# Overall rating
if score &gt;= 70:
rating = 'Excellent'
elif score &gt;= 50:
rating = 'Good'
elif score &gt;= 30:
rating = 'Fair'
else:
rating = 'Pass'

return {
'score': score,
'rating': rating,
'factors': factors
}

Properties scoring 70+ are your highest-priority targets.


Real-World Success Storiesโ€‹

Case Study 1: Austin Investorโ€‹

Investor: Private investor, 12 rental properties

Strategy: Automated discount-to-value analysis

Results:

  • Scanned 2,400 active listings monthly
  • Identified 18 properties with 15%+ discount
  • Analyzed top 5 in detail
  • Acquired: 3-bed/2-bath at $365K (18% below $445K consensus value)
  • Instant equity: $80,000
  • Time to find: 45 minutes of automation vs weeks of manual searching

Case Study 2: Phoenix Multi-Family Investorโ€‹

Investor: Small fund, 85 units

Strategy: Price reduction monitoring + expired listings

Results:

  • Tracked 340 price reductions over 3 months
  • Identified 12 significant reductions (10%+)
  • Found 8 recently expired listings
  • Acquired: 4-unit property at $425K (was $525K originally, expired at $475K)
  • Discount: 30% below original list, 12% below market
  • Conversion: Direct offer to owner, no competition

Tools & Resourcesโ€‹

Data Sources You Needโ€‹

Automated Valuation Models (AVMs):

  • Zillow Zestimate (1.9% median error)
  • Redfin Estimate (2.1% median error)
  • Realtor.com Estimate
  • Use consensus (median of 3+) for best accuracy

Listing Data:

  • Active listings with price history
  • Sold comparables (last 6-12 months)
  • Expired/withdrawn listings
  • Days on market tracking

Property Details:

  • Bedrooms, bathrooms, sqft
  • Lot size, year built
  • Recent renovations
  • Tax assessment data

Automation Toolsโ€‹

PropAPIS provides all of the above in one unified API:

  • 20+ data platforms (Zillow, Realtor.com, Redfin, MLSs)
  • Real-time updates (15-30 minute lag)
  • Historical data (5+ years)
  • Normalized data model
  • Start free trial โ†’

Action Plan: Your First 30 Daysโ€‹

Week 1: Setupโ€‹

  • Choose your target market(s)
  • Set up data access (PropAPIS or similar)
  • Define your criteria (property type, price range, minimum discount)
  • Set up automated searches

Week 2: Testingโ€‹

  • Run all 5 strategies
  • Analyze 10-20 properties manually
  • Validate estimates against local knowledge
  • Refine your scoring criteria

Week 3: Outreachโ€‹

  • Create offer templates
  • Set up email/phone outreach system
  • Contact top 5 opportunities
  • Track response rates

Week 4: Optimizationโ€‹

  • Review what's working
  • Adjust filters and criteria
  • Expand to additional markets if needed
  • Scale what's working

Common Mistakes to Avoidโ€‹

1. Relying on single data source

  • โŒ Using only Zillow Zestimate
  • โœ… Use consensus of 3+ sources

2. Ignoring property condition

  • โŒ Assuming "discount" = good deal
  • โœ… Factor in repair costs

3. Not acting fast enough

  • โŒ Analyzing for days while property sells
  • โœ… Make offers within 24-48 hours

4. Over-optimizing criteria

  • โŒ Looking for 30%+ discount only
  • โœ… 15-20% discount is excellent

5. Forgetting to verify data

  • โŒ Blindly trusting automated values
  • โœ… Drive by property, check comps

Conclusionโ€‹

Finding undervalued properties isn't about luck - it's about having better data and acting faster than the competition.

The key takeaways:

  1. Automate your search - Manual searching doesn't scale
  2. Use multiple data sources - Consensus estimates are more accurate
  3. Combine strategies - Multi-factor scoring finds best deals
  4. Act quickly - Speed wins in real estate
  5. Track everything - Measure what works, optimize over time

Start with one strategy (discount-to-value analysis is easiest), prove it works, then layer in additional strategies.

Ready to find your first undervalued property?

Get Started โ†’ โ€ข View API Docs โ†’


Related Resources: