Skip to main content

PropAPIS for Developers and Builders

Inform development decisions with comprehensive market data for site selection, feasibility analysis, and competitive intelligence.

Key Benefits

  • Site Selection: Identify high-demand areas for new development
  • Market Feasibility: Assess absorption rates and price points
  • Competitive Analysis: Track competing new construction
  • Price Positioning: Determine optimal pricing strategy
  • Demand Analysis: Understand buyer preferences and trends

Use Cases

Site Selection Analysis

Identify optimal locations for new development:

from propapis import PropAPIS

api = PropAPIS(api_key='your_api_key')

def analyze_development_site(locations):
results = []

for location in locations:
market = api.platforms.zillow.get_market_trends(location=location)

# Development feasibility metrics
score = 0
if market.yoy_change > 5:
score += 3 # Strong price growth
if market.months_supply < 4:
score += 2 # Low inventory (high demand)
if market.avg_dom < 30:
score += 2 # Fast sales

results.append({
'location': location,
'median_price': market.median_price,
'growth': market.yoy_change,
'inventory': market.months_supply,
'dom': market.avg_dom,
'score': score
})

# Rank by development score
results.sort(key=lambda x: x['score'], reverse=True)

print("Site Selection Rankings:")
for i, site in enumerate(results, 1):
print(f"{i}. {site['location']} (Score: {site['score']}/7)")
print(f" Growth: {site['growth']:+.1f}% | Supply: {site['inventory']:.1f}mo")

return results

Price Point Analysis

Determine optimal price range for new homes:

def analyze_price_points(location):
# Get recent sales
sold = api.platforms.zillow.search_sold(
location=location,
sold_in_last_days=180,
property_type='Single Family'
)

# Analyze price distribution
prices = [p.sold_price for p in sold]
prices.sort()

quartiles = {
'q1': prices[len(prices) // 4],
'median': prices[len(prices) // 2],
'q3': prices[len(prices) * 3 // 4]
}

print(f"Price Point Analysis - {location}")
print(f"Lower Quartile: ${quartiles['q1']:,}")
print(f"Median: ${quartiles['median']:,}")
print(f"Upper Quartile: ${quartiles['q3']:,}")

# Recommend price range
print(f"\nRecommended Price Range: ${quartiles['median']:,} - ${quartiles['q3']:,}")

return quartiles

Absorption Rate Analysis

Assess market demand and sales velocity:

def analyze_absorption_rate(location):
market = api.platforms.zillow.get_market_trends(location=location)

# Calculate monthly absorption
monthly_sales = market.sold_count_30d
active_inventory = market.active_count
absorption_rate = monthly_sales / active_inventory if active_inventory > 0 else 0

print(f"Absorption Analysis - {location}")
print(f"Active Listings: {active_inventory:,}")
print(f"Sales (30d): {monthly_sales:,}")
print(f"Monthly Absorption: {absorption_rate:.1%}")
print(f"Months of Supply: {market.months_supply:.1f}")

# Development recommendation
if market.months_supply < 4:
print("✓ HIGH DEMAND - Favorable for new development")
elif market.months_supply < 6:
print("○ MODERATE DEMAND - Proceed with caution")
else:
print("✗ LOW DEMAND - Not recommended for development")

return absorption_rate

Competitive New Construction

Track competing new home communities:

def analyze_competition(location):
# Find new construction
new_homes = api.platforms.zillow.search_listings(
location=location,
property_type='Single Family',
new_construction=True,
status='active'
)

print(f"Competitive Analysis - {location}")
print(f"Active New Construction: {len(new_homes)}")

# Analyze pricing
if new_homes:
prices = [h.price for h in new_homes]
avg_price = sum(prices) / len(prices)
avg_ppsf = sum(h.price / h.sqft for h in new_homes) / len(new_homes)

print(f"Avg Price: ${avg_price:,.0f}")
print(f"Avg PPSqft: ${avg_ppsf:,.0f}")

print("\nTop Competitors:")
for home in sorted(new_homes, key=lambda x: x.price)[:5]:
print(f" {home.address} - ${home.price:,}")

return new_homes

Buyer Preference Analysis

Understand market preferences:

def analyze_buyer_preferences(location):
# Get recent sales
sold = api.platforms.zillow.search_sold(
location=location,
sold_in_last_days=180
)

# Analyze preferences
bedrooms = [s.bedrooms for s in sold]
most_common_beds = max(set(bedrooms), key=bedrooms.count)

bathrooms = [s.bathrooms for s in sold]
most_common_baths = max(set(bathrooms), key=bathrooms.count)

print(f"Buyer Preferences - {location}")
print(f"Most Popular: {most_common_beds} bed / {most_common_baths} bath")
print(f"Based on {len(sold)} sales in last 6 months")

Quick Start

from propapis import PropAPIS

api = PropAPIS(api_key='your_api_key')

# Analyze development site
market = api.platforms.zillow.get_market_trends(location='Austin, TX')

print(f"Median Price: ${market.median_price:,}")
print(f"YoY Growth: {market.yoy_change:+.1f}%")
print(f"Months Supply: {market.months_supply:.1f}")
print(f"Avg DOM: {market.avg_dom:.0f}")

For detailed API documentation, see our API Reference.