Skip to main content

PropAPIS for Lenders and Appraisers

Streamline property valuations, comp analysis, and risk assessment with comprehensive real estate data.

Key Benefits

  • Automated Valuations: Instant AVMs from multiple sources
  • Comp Analysis: Find comparable sales automatically
  • Historical Data: Complete transaction history
  • Market Context: Neighborhood trends and statistics
  • Risk Assessment: Market volatility and area analysis

Use Cases

Automated Property Valuation

Get instant valuations for lending decisions:

from propapis import PropAPIS

api = PropAPIS(api_key='your_api_key')

def get_property_valuation(address):
prop = api.platforms.zillow.get_property(address)

# Multiple valuation sources
valuations = {
'zestimate': prop.zestimate,
'zestimate_range': (prop.zestimate_low, prop.zestimate_high)
}

print(f"Valuation Report - {address}")
print(f"Zestimate: ${valuations['zestimate']:,}")
print(f"Range: ${valuations['zestimate_range'][0]:,} - ${valuations['zestimate_range'][1]:,}")

return valuations

Comparable Sales Analysis

Find recent sold comps for appraisals:

def find_appraisal_comps(subject_address):
# Get subject property
subject = api.platforms.zillow.get_property(subject_address)

# Find comparable sold properties
comps = api.platforms.zillow.search_sold(
location=subject_address,
radius=0.5,
sold_in_last_days=180,
min_bedrooms=subject.bedrooms - 1,
max_bedrooms=subject.bedrooms + 1,
min_sqft=subject.sqft * 0.8,
max_sqft=subject.sqft * 1.2
)

print(f"Subject: {subject.address}")
print(f" Bedrooms: {subject.bedrooms} | Sqft: {subject.sqft:,}")
print(f"\nComparable Sales ({len(comps)}):")

for comp in comps[:5]:
price_per_sqft = comp.sold_price / comp.sqft
print(f"{comp.address}")
print(f" Sold: ${comp.sold_price:,} on {comp.sold_date}")
print(f" Sqft: {comp.sqft:,} | PPSqft: ${price_per_sqft:,.0f}")

# Calculate average price per sqft
avg_ppsf = sum(c.sold_price / c.sqft for c in comps) / len(comps)
estimated_value = subject.sqft * avg_ppsf

print(f"\nEstimated Value: ${estimated_value:,.0f}")
print(f"Based on ${avg_ppsf:,.0f}/sqft")

return comps

Loan-to-Value Analysis

Calculate LTV ratios:

def calculate_ltv(address, loan_amount):
prop = api.platforms.zillow.get_property(address)

ltv = (loan_amount / prop.zestimate) * 100

print(f"LTV Analysis - {address}")
print(f"Property Value: ${prop.zestimate:,}")
print(f"Loan Amount: ${loan_amount:,}")
print(f"LTV Ratio: {ltv:.1f}%")

if ltv <= 80:
print("Risk Level: Low (≤80% LTV)")
elif ltv <= 90:
print("Risk Level: Moderate (80-90% LTV)")
else:
print("Risk Level: High (>90% LTV)")

return ltv

Market Risk Assessment

Assess area market conditions:

def assess_market_risk(location):
market = api.platforms.zillow.get_market_trends(location=location)

print(f"Market Risk Assessment - {location}")
print(f"Median Price: ${market.median_price:,}")
print(f"YoY Change: {market.yoy_change:+.1f}%")
print(f"Months Supply: {market.months_supply:.1f}")
print(f"Avg DOM: {market.avg_dom:.0f}")

# Risk scoring
risk_score = 0

if market.yoy_change < -5:
risk_score += 3
print("⚠️ Declining prices")

if market.months_supply > 9:
risk_score += 2
print("⚠️ Oversupply")

if market.avg_dom > 90:
risk_score += 1
print("⚠️ Slow market")

if risk_score == 0:
print("✓ Market risk: LOW")
elif risk_score <= 3:
print("⚠️ Market risk: MODERATE")
else:
print("❌ Market risk: HIGH")

return risk_score

Quick Start

from propapis import PropAPIS

api = PropAPIS(api_key='your_api_key')

# Get property valuation
prop = api.platforms.zillow.get_property('123 Main St, Austin, TX')

print(f"Zestimate: ${prop.zestimate:,}")
print(f"Range: ${prop.zestimate_low:,} - ${prop.zestimate_high:,}")

# Find comps
comps = api.platforms.zillow.search_sold(
location='123 Main St, Austin, TX',
radius=0.5,
sold_in_last_days=180
)

print(f"Found {len(comps)} comparable sales")

For detailed API documentation, see our API Reference.